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In this paper we give general criteria to be satisfied by a slowly time-dependent Hamil-
tonian in order to possess adiabatic invariants of m-th order. We evaluate also the degree
of approximate constancy of such adiabatic invariants. We end up the paper applying our
methods to the motion of a charged particle in a magnetic field, j.e. to the harmonic
oscillator.

§ 1. Introduction

In plasma physics the so-called guiding center approximation treats the
motion of charged particles in a varying electromagnetic field as a gyration
about the guiding center which in turn moves through space. The separation
of these two motions can be valid only if the change of the field in space and
time is slow. : '

To study those motions the concept of adiabatic invariant is important.
Precise formulation of the notion of adiabatic invariance has been given by
Chandrasekhar” and Lenard.” XKulsrud® believes that there are many quantities
that are adiabatic invariants of higher order, even though we only ‘know that
they are invariants to a lower order.

If the guiding center approximation is valid, the adiabatic invariant of the
gyration is assumed constant. It is. interesting to know the error made when
this is done. Therefore we should try to study the approximate constancy of

adiabatic invariants. Adiabatic invariants are strict Consténts of the motion if
the fields are constant.

Lenard proved the adiabatic invariance of the action integral of a one-
dimensional non-linear oscillator to all orders. His paper is a generalization
of the work of Kulsrud who studied the same concept for the harmonic oscil-

lator. In Lenard’s paper the time-dependent Hamiltonian corresponds, for fixed
time, to a periodic motion.

In this paper we will generalize the results obtained by other authors in
several points. First of all, we will not require that the time-dependent hamiltonian
represent instantaneously a periodic motion; the unperturbed hamiltonian,
though, must correspond to a periodic motion. Secondly, we give general cri-
teria to be satisfied by the slowly time-dependent hamiltonian in order to pos-
sess adiabatic invariants of m-th order. Thirdly, our method allows us to
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evaluate the degree of approximate constancy of such adiabatic invariants.

Adiabatic invariants are quantities that remain constants of the motion
during an infinitely slow variation of the external parameters of the system.
Their usefulness lies in the fact that they remain constant to a very good ap-
proximation even when the external parameters vary at a finite rate. In real
plasma physics the external parameters always vary at a finite, though slow,
rate. That is why our calculations can be applied to actual plasma problems.
The method used in this paper is based on the introduction of the interaction
picture® for classical mechanics.

We end up our paper applymg the general techniques presented in the
same to the motion of a charged particle in a magnetic field that varies in time
slowly but at a finite rate.. We evaluate the errors that are made in plasma
physics when the adiabatic invariants are taken to be exact constants of the

motion,

§ 2. Adiabatic invariants

We suppose that the Hamiltonian H(z) of the system depends explicitly on
time. As a matter of fact such a Hamiltonian, F(z), varies continuously with
time from an initial value, H,, at the instant # to a certain final value, I, at
the instant 7. We write

' T=ti—t, = t;f" A (1)

and design by H(r) the value of the Hamiltonian F(z) at the time instant
t=t,+cT. H(r) is a continuous function of ¢ that we suppose given. The
rate of evolution of the system from time # till time # depends only on the -
parameter 7. We plan to study the case in which T is very large.

If we define the parameter E=1/T, the limit &>0 implies the indefinite
decrease in the rates of change of external parameter. While the physical
time ¢z goes from # to #, the fictitious time parameter ¢ changes from =0 to
r=1.

| Therefore

H(0) = H,, H(1)=H,. ' (2)
We have to study the evolution of the system under the action of the
hamiltonian H(r) when t goes from t=0 to t=1. We plan to expand the
corresponding evolution operator in powers of 77
A quantity £ is an adiabatic invariant to the m-th order, if a positive
constant M can be found such that during the time 1nterva1 T(T—oc) the
variation of £ satisfies :

(3)
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Even though we have studied elsewhere® the interaction picture for clas-
sical. mechanics, we will do it again now for the case in which the Hamiltonian
H(1) depends explicitly on time in order to write the corresponding equations
in terms of the fictitious time t and of the fictitious Hamiltonian H(<). '

§ 3. . Interaction picture

The dynamical time evolution of a function A=A(q, p) of the sets of ca-
nonical conjugate variables, i.e. the total time evolution if that function A does
not depend explicitly on time, is given by

dA _ < 8H 8A 3H 3A

. (4)
dt T 8py 0q; Oqs Op,

where H=H(q, p, ¢) is the Hamiltonian of the system referred to the physical
time £ The same equation written -in terms _of the new time variable ¢ and
of the Hamiltonian H(z) is

48 170, 4], | (5)

where the square parenthesis stands for the commutator between the quantities
within. The operator £ is Liouiville’s differential operator given by

s PH 3 _3H @
T Ops, 8qs g Op;
The time evolution may be integrated introducing a differential operator

S(z) wrltten as a function of L10u1v111es operator 2. Such operator S(7) is
defined by means of

(6)

2=

Alg(®), p()) =8() Algo, £0) 7 () M
where g, and p,, are the values of the sets of canonical var1ables at the time
origin, i.e,

40=0:0),  pu=p(0). (8)
The boundary condition satisfied by S(c) is evidently
S(0)=1. (9)

If we enter with (7) into (5) we obtain the differential equation satisfied
by the evolution operator

%ﬂswmcqo, $os 7). (10)

The differential equation and the boudary condition can be both included in
the following integral equation
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0

SE=14T|an5() (qpn). (1)

We are interested in the operator S(1).

We would like to discuss now the time dependence of the operator £.
The Hamiltonian never has dynamical time dependence since its total time, -
derivative is equal to its partial time derivative, Therefore H—H (g, p, ) de-
pends on time ¢ only because of the explicit time dependence of the same.
Besides Liouiville’s operator may be written formally as »

7 Q=HI ' (12)
where I is the double operator. defined as ' '
5 o 3 o -
I=> -~ — 13
; 8Pi 891 . 39 3 aPz' ( )

- But I is invariant with respect to a canonical transformation. As a matter
of fact, this is the actual content of the well-known invariance of the Poisson’s
brackets with respect to the above-mentioned transformations. Therefore I is
invariant with respect to the time evolution of the system which is a canonical
transformation. Consequently, £ depends on = only through the explicit time
dependence of H(r). Letus now pass to the interaction picture. We define
H=H(0) as the unperturbed Hamiltonian, and S,(z) the evolution operator
generated by H, We define the interaction picture evolution operator S;(v) by

Alg(©), () =5:(2) So() Algo, po) S () S (). (14)
The perturbation Hamiltonian is defined by
Hy(s)=H(s) — H, (15)

Hamiltonian that depends on time explicitly. From it we can construct another
Liouiville’s differential operator that we will call £, (gopor).
Entering into (5) with expression (14), we find out the integral equation
* satisfied by S,(7).

Su(2) =1+T\"d:'sl<r') o[ (16)
where
D ]=80(2) 2{qopet) Syl (e) - (17)

is the perturbing Liouiville’s operator in the interaction picture. Such operator
depends on time ¢ on two accounts: Firstly because FL(c) has an explicit
time dependence, secondly because the unperturbed evolution operators S,(z)
acting on the canonical set of conjugate variables that enter in the definition
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of £,(v) will induce the time dependence of the unperturbed motion in the
same. Now, since the operator I of (13) is invariant under canonical transfor-
mations and remembering the symbolic expression (12), this second time de-
pendence induced in £,(r) corresponds to the time dependence induced in

H,(v) =Hi (g, p, 7) by S(7); so, symbolically
A [7]=Hi(go(7), po(e), o) - T (18)

where '
qio(7) =S5(2) S (7) 5 pun(e) =Su(7) prS7H(2). (19)

The slow time dependence of the perturbing’ Hamiltonian implies that
£2:(go, po, 7) does not contain the large parameter T, while S)(t) of (17) should
more exactly be written, as :

So(r)_ —>850(T7) =8,(2) , (20)

when #=0 as we will suppose from now on.

§ 4. Périodic motion

We suppose that the unperturbed motion generated by H, is periodic..
There are two kinds of periodic motions. Consider a system with a single
degree of freedom. For such a system phase space is a two-dimensional plane.
The first type, designated by the name ““libration ”, occurs whenever both ¢
and p are periodic functions of the time with the same frequency. Its orbit
in phase space is closed. For the second type the coordinate ¢ itself is not
periodic, but is such that when g is increased by some value, the configuration
of the system remains essentially unchanged. This motion will be referred to,
simply, as rotation. The values of the position coordinate, that indeed in this
type of periodicity is invariably an angle of rotation, are no longer bounded,

" but can increase indefinitely. In dealing with systems of more than one degree
of freedom, the motion of the system is said to be periodic if the projection
of the system point on each (g;, ;) plane is simply periodic in the sense defined
for motion of only one degree of freedom. We suppose that the Hamilton-
Jacobi equation is separable in at least one set of canonical variables. Then
the projected motions are independent of each other, and their nature may be
readily examined. ,

It is well known that, for periodic motions, when the value of the angle
coordinate changes by unity the corresponding separation coordinate goes
through a complete cycle. For the libration case this means return to its origi-
nal value, while for the rotation type of periodicity the behaviour is more com-
plicated. In general it is therefore possible to express a periodic separable
coordinate as a Fourier series. The same may be said of a function of the
separation coordinates such as, for instance, the perturbing Hamiltonian. We
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will limit ourselves to the cases when this Fourier expansion is possible.

We have to assume now that the necessary conditions are met so that the
unperturbed periodic motion introduces a time dependence in H;(gy(7), po(7), T)
such that this function may be represented as a sum of simple harmonic mo-
tions involving variable coefficients that account for the explicit time depen-
dence of H,. So we may write

- Hyq(), po(e), ] 2 hy(e) e | (21)

The coefficients A,(r) would not depend on time t if the perturbing Ha-
miltonian did not have explicit time dependence. The constants w; represent
the fundamental frequencies and all its harmonics of the unperturbed periodic
motion.

§ 5. Approximate constancy of adiabatic invariants

Let us suppose that the functions A(q, p) represent constants of the motion
of the unperturbed motion. For them it holds

So(z) Agops) S (%) = A(qopo) (22)

and, therefore, its time evolution will be given by S, (r)A(gws)S.7'(s). As
usually done, the integral equation for () is solved by iteration. Thus we
get the following expansion for S;(1).
1 1 T’
Si(1)=1+ TS de' 9, []+ T* j dt’S d" 0[] []
0 0 [1]
1 ! A1) ,
4T S o S dee. S d® Q[+ Q[ ] @[ . (23)
0 0 o
The general term in this series is equal to a multiple integral of a chrono-
logical ordered product of Liouiville’s operators £[z]. ~ This fact is a well-known
theorem in quantum mechanics, which has recently been extended to classical
mechanics.”
Therefore the m-th term of series (23) satisfies

7! ' (77"‘1)

Tnjd‘-/j‘d -1, \ P e U,Q [_(n)] 91["’]

ol §d'5d o \Pd‘("’ a1 200 (24)

where the symbol { }_ means chronological ordermg: It rearranges the prod-
uct of time-labeled operators in the same order as the time sequence of their
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label, the latest one in time being last in the product, i.e. operators appear in
the order, reading from left to right, of growing time values.

Let us now study the value of an integral whose integrand is a rapidly
varying periodic operator as it is £]z] since in (21) we are going to consider
T large. For instance we will study the value of

1
Ry(T) = SUQ,(r) ¢"s77 dc | (25)
[
where £,(7) is Liouiville’s operator corresponding to A,(r). Integrating R;(T)
m-times by parts and provided that £,(z) and its first m derivatives are zero
for t=0 and for r=1, we find

_(__1>m+1 ! I dm+lgj(f)
(Z'ij)m+1 . e’ dz.m+1

0

R(T) = dr, (26)

integral that is quite small for large 7 The operator d™"'2,(z)/d=™* is
Liouiville’s operator for d™*'h,(z)/ds™**. Let us now try to evaluate the action
of R;(T) on the adiabatic invariants if the derivatives of order higher than m
of £,(r) are not zero at the initial and final times. We integrate again by
parts and obtain ' -

.(_1)m+1 {[ eimj'rT dm+1_Qj(:.) ilr=1___ 1
(G, T)Y)™™ L de; T dm+t =0 ;T

fogrl ———I are, dr} .

RJ(T) = dz.m+2

e

ey =

27)

To find an upper limit of this expression for 7—>oc we neglect the term
containing the integral since by the same procedure of integration by parts we
can show that such a term contains powers of 1/7 higher than the other terms.
Since the operator d™"'2;(c)/dc™*' does not contain the parameter T, we can
in general find an upper bound to the action of the same when it acts on a
certain constant of the motion of the unperturbed system. Let us call M, and
M, the upper bounds of d™*Q,(z)/dr™*' at the instants r=1 and =0 respec-
tively. Then the action of R,(T) on such adiabatic invariant is bounded as
follows, :

M.+ M,
(ij)fnu-z :

- The same can be said for any of the integrals whose sum is the right-hand
side of the series (23).. Applying identical procedure of partial integrations to
each one of the 7 integrals of the general term (24) of (23), we will find that
for large T such a term is of the order

IR, ()l < (28)

1

T me2.n o (29)
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provided that H,(7) and its m first derivatives are zero at =0 and t=1.

So we deduce that all the constants of the motion of the initial Hamiltonian
H, are adiabatic invariants of order m-+1 of the slowly time dependent Ha-
miltonian H(z) provided that H,(r) and its m first derivatives are zero at the
beginning and at the end of the interval #—#=T which we suppose to be very
large.

The precedent statement 1nc1udes as-a partlcular example the case of adiabatic
invariance to all orders when H,(¢r) and all its derivatives ‘are zero at the ex-
tremes of the long time interval. We may deduce for this case that the dif-
ference between S (7) and 1 is smaller than any power of 1/7. We know that
in certain cases,” such a difference behaves as e 7.

The above said conditions can be simplified if T is large but finite. Then
the constants of the motion of the periodic motion are adiabatic invariants of
order m+1 of the Hamiltonian FH(z) if this Hamiltonian and its m first deriva-
tives are zero at the beginning and at the end of the time interval.

*The present technique provides a method of evaluating the approximate
constancy of the adiabatic invariants for large but finite 7. Indeed for the -
constants of H, we have :

Ag(D), p(1))—A(g(0), p(0))=4A

}- ) dm+1 J
=[Sy [ g 260,20 )} (80
since all the other terms of S;(1) contribute much less to this difference,

We would like to emphasize that this proof of the adiabatic invariance of
“the constants of the motion of the unperturbed Hamiltonian is not based on the
smallness of the perturbation Hamiltonian, but rather we have required that
the perturbation Hamiltonian evolving under the action of the unperturbed one
be a purely oscillating function of time without non-oscillating components.

We are going to examine presently the adiabatic invariance of the constants
of the motion of the Harmonic oscillator. We will see that the deduction of
many well-known results implies a small modlﬁcatlon of techmques developed
so far.

We would like to-remark here that the procedure of introducing the inter-
"action picture for classical mechanics allows us not only to show when we have
adiabatic invariants of m-th order, but also to evaluate the variation of such
adiabatic invariants during the _evolution of the system when 7" is large but
finite, this last result being of great interest.

§ 6. A differential equation

In the same way as, from the differential equation of motion (4) of analyti-
cal dynamics, we can deduce an operational equation (7), for the adiabatic
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invariants whose time evolution is given by S,(z), we can deduce a differential
equation

SA(7) Ty dH,[r] PA(z) _8H,[r] 3A(7)
oc T Oy 9g; 9g; Op:
corresponding to a Hamiltonian that is the perturbation Hamiltonian in inter-

action picture. With the help of this differential equation, stability conditions
can. be discussed. :

(31)

§ 7. Application

We plan to study now the motion of a charged particle in a slowly time
depending uniform magnetic field. In particular it is Interesting to examine
the approximate constancy of the magnetic moment of the charged particle.

The motion of such particle is essentially equivalent to that of a simple
harmonic oscillator ‘provided that we identify the Larmor frequency with twice
the frequency of the oscillator.” The magnetic moment is proportional to the .
action variable of the oscillator, : '

Therefore in this paper we will limit ourselves to study the approximate
constancy of the action variable for the simple harmonic oscillator. '

The Hamiltonian for this problem is

2 2 ‘ .
H=_?"_ + ma-4_. : (32)
2m 2
Here o is the frequency that we will suppose a slow function of time
, .
v=w()=wl-"-). 33
v=0@=0(-L) (33)

[N

The action integral J for a simple harmonic oscillator is equal to the energy
divided by the frequency of the oscillation. Making use of the method described
above, we can easily determine the change in J for a variation of w.

The usefulness of performing a canonical transformation to the action-angle
variables to study this kind of problems is well known. Therefore we shall
make a canonical transformation from the set (g, ») of canonical conjugate
variables to the new variables (4, J) defined in such a way that they reduce
to the ordinary action-angle variables when the Hamiltonian (32) does not
contain explicit time dependence, i.e. when the oscillator has a constant frequen-
cy. As is usually done, we shall choose the generating function to depend on
g, 0, and z, and in such a way that it reduces for constant o, to the generating
function of the well-known® canonical transformation to the action-angle variables
for the simple harmonic oscillator of constant frequency. Therefore the gener-
ating function is

G(q, 0, ) :—;an(?) g* cotd. | (34)
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" which yields the following expressions for the momentum p and the action J,

p=mawq cotl,
_ mwg’ (35)
2 sin?f ’
and the new Hamiltonian written in terms of 4, J is
dr oG _ A
H'=H+. =wJ ———J 20 36
* dt 0Ot + 2T o sin (36)
where
b= dow — dow . (37)
d, dt

The partition of H’ into unperturbed term: Hy and perturbation in order
to obtain the interaction picture is immediate,
- Hy=wdJ,
(38)
H/i=— —J sin24.
2T

w

Let us examine if the conditions sufficient for the adiabatic invariance of J
are fulfilled. The unperturbed .equations of motion are

. iﬂ——w( )_w(;),

dt (39)
4 g
dt
" whose solutions are
t . t/ T
0o(2) =0,+ S(r) (?) dt =0,+ TS (") de,
- 0 X 0
Jo(t) =J, ‘ ' ‘(40)

where 0,=40,(0), Jy=Jy(0) are the initial values of these variables. Indeed J
is a constant of the motion of FH,’. The perturbing Hamiltonian H,’=H,'(r)
in the interaction picture is ‘

1/ =5u() Hi (e )57 )= -2 Ty sinz (0 +Tjw<-'>d-) (41)
[
[}
which for large T is a rapidly oscillating function of the general form (21)
that fulfills all the sufficient conditions to assure the adiabatic invariance of J.
In our case onIy one function h,(z) appears and it is 1/27-&(7)/w(z) - J,.
We would like to remark a peculiarity proper to the simple harmonic oscil-
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lator, that is, that H,[r] is not quite a periodic function without constant Fourier
term, but it is rapidly oscillating and such that F,/(z) of (38) is a small per-
turbation compared with Hy property that is much stronger than those needed
to prove the adiabatic invariance of the constants of the motion of H,’. Indeed
we have

H,/' 1 o

Hy T o (42?-

that goes to zero for large T provided that » never becomes zero, as is the
case for a charged particle in a magnetic field. As a matter of fact the proofs
presented so far to show the adiabatic invariance of the action integral of the
harmonic oscillator were based on this peculiar property, that is, why they
could not be applied to other mechanical systems. :

From formula (30) we obtain the following value for the variation of the
action integral in the interval (0, 7°)

1

0T =J(1) —J(0) = —Joj" ‘:8 cos2 (00+ Tjw(rf) dr’) dr (43)
{ [
0 0
for whose deduction we have used
_ o0 o8 9 3 (44)
3J 88 388 3J
and the fact that
00,@) . (45)
| 06,(,)
If @ and its m first derivatives are zero at t=0 and r=1, ie. if the first

m+1 derivatives of w(r) are zero at t=0 and r=1, the integral in (43) is of
the order 1/7™*% -In such a case, therefore, the action integral is adiabatic
invariant of order m+2. Observe that this is so even if w(0)sw(1), ie. in
the case when the magnetic field in which the charged particle moves changes
from a constant initial value B, to another constant final value B,, provided
that this change takes place in a very long time compared with the Larmor
period. :

Integrating (43) by parts we will obtain the corresponding value of oJ.
Finally we should remark that sometimes it is convenient to evaluate the average
of the resulting 6J over equally weighted values of 0,; and to evaluate this
average {0J )s, we may need second terms of the perturbation series (23) since
this average of (43) is identically zero.

§ 8. Conclusions

We should like to call the reader’s attention to a paper by S. Tamor” in
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which he. extended the adiabatic invariance concept for a one-dimensional oscil-
lator to. the case where the frequency has one singularity for finite time. We
have studied here only the case where the Hamiltonian does not possess such
a singularity. However, the case of a singular Hamiltonian can be handled by
the formalism here presented. The study of this problem and the new conclu- -
sions at which we arrive, will be done elsewhere.

The assumptions taken in this paper may be summarized stating that once
the Hamiltonian is splitted into the unperturbed part and the perturbation, this
last one considered as function of g=g¢,(¢), p=p.(2) solutions of the unperturbed
motion, should be a sum of rapidly oscillating terms when the time interval T
becomes very large. Under these conditions the constants of the motion of the
unperturbed Hamiltonian are adiabatic invariants of »-th order if the perturbing
Hamiltonian and its m—1 time derivatives with respect to the explicit’ time
dependence of the perturbation are zero at the initial and final time instant.

In order to compare this approach with the one by Kulsrud® we may say
that ours is more general since it is based on an operational development of
classical mechaics and on the introduction of the interaction picture. By our
approach we can treat the adiabatic invariants of the harmonic oscillator as a
particular example of our general theory as soon as we split the Hamiltonian
into the unperturbed part and the perturbation as it is done in the application
in which, precisely, we studied the harmonic oscillator. If this is done, the
conclusions at which both approaches arrive coincide.

Finally we remark that, as it happened for the harmonic oscillator, the
unperturbed Hamiltonian may be time depending also. Its constants of the
motion are adiabatic invariants provided that the perturbation in the interaction
p1cture fulﬁlls the required conditions.
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